1. Gilman A (1963) The initial clinical trial of nitrogen mustard. Am J Surg 105: 574–578PubMedCrossRefGoogle Scholar
  2. Chang TK, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53: 5629–5637PubMedGoogle Scholar
  3. Brade WP, Herdrich K, Varini M (1985) Ifosfamide-pharmacology, safety and therapeutic potential. Cancer Treat Rev 12: 1–47PubMedCrossRefGoogle Scholar
  4. Wagner T, Heydrich D, Jork T et al. (1981) Comparative study on human pharmacokinetics of activated ifosfamide and cyclophosphamide by a modified fluorometric test. J Cancer Res Clin Oncol 100: 95–104PubMedCrossRefGoogle Scholar
  5. Erickson LC, Bradley MO, Ducore JM et al. (1980) DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas. Proc Natl Acad Sci 77: 467–471PubMedCrossRefGoogle Scholar
  6. Lokiec F, Beerblock K, Deloffre P et al. (1989) Étude de pharmacocinétique clinique de la fotémustine dans différents indications tumorales. Bull Cancer 76: 1063–1069PubMedGoogle Scholar
  7. Pendyala L, Creaven PJ (1993) In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res 53: 5970–5976PubMedGoogle Scholar
  8. Fichtinger-Schepman AM, van der Veer JL, den Hartog JH et al. (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24: 707–713PubMedCrossRefGoogle Scholar
  9. Eastman A (1986) Reevaluation of interaction of cis-dichloro(ethylenediamine) platinum II with DNA. Biochemistry 25: 3912–3915PubMedCrossRefGoogle Scholar
  10. Minn AJ, Rudin CM, Boise LH et al. (1995) Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86: 1903–1910PubMedGoogle Scholar
  11. Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81: 151–157PubMedGoogle Scholar
  12. Zhou BS, Bastow KF, Cheng YC (1989) Characterization of the 3’ region of the human DNA topoisomerase I gene. Cancer Res 49: 3922–3927PubMedGoogle Scholar
  13. Cui Y, Konig J, Buchholz JK et al. (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55: 929–937PubMedGoogle Scholar
  14. Ishikawa T, Ali-Osman F (1993) Glutathione-associated cis-diammine dichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268: 20116–20125PubMedGoogle Scholar
  15. Nishimura T, Newkirk K, Sessions RB et al. (1996) Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res 2: 1859–1865PubMedGoogle Scholar
  16. Surowiak P, Materna V, Kaplenko I et al. (2005) Augmented expression of metallothionein and glutathione S-transferase pi as unfavourable prognostic factors in cisplatin-treated ovarian cancer patients. Virchows Arch 447: 626–633PubMedCrossRefGoogle Scholar
  17. Dabholkar M, Thornton K, Vionnet J et al. (2000) Increased mRNA levels of xeroderma pigmentosum complementation group B (XPB) and Cockayne’s syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or metallothionein-II (MT-II) in platinum-resistant human ovarian cancer tissues. Biochem Pharmacol 60: 1611–1619PubMedCrossRefGoogle Scholar
  18. Dabholkar M, Vionnet J, Bostick-Bruton F et al. (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94: 703–708PubMedCrossRefGoogle Scholar
  19. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270: F700–F708PubMedGoogle Scholar
  20. Rybak LP, Whitworth CA, Mukherjea D et al. (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226: 157–167PubMedCrossRefGoogle Scholar
  21. Malonne H, Atassi G (1997) DNA topoisomerase targeting drugs: mechanisms of action and perspectives. Anti-Cancer Drugs 8: 811–822PubMedCrossRefGoogle Scholar
  22. Kehrer DFS, Soepenberg O, Loos WJ et al. (2001) Modulation of camptothecin analogs in the treatment of cancer a review. Anti-Cancer Drugs 12: 89–105PubMedCrossRefGoogle Scholar
  23. Buick RN, Messner HA, Till JE, McCulloch EA (1979) Cytotoxicity of adriamycin and daunorubicin for normal and leukemia progenitor cells of man. J Natl Cancer Inst 62: 249–255PubMedGoogle Scholar
  24. Bhuyan BK, Blowers CL, Crampton SL, Shugars KD (1981) Cell kill kinetics of several nogalamycin analogs and adriamycin for chinese hamster ovary, L1210 leukemia, and melanoma cells in culture. Cancer Res 41: 18–24PubMedGoogle Scholar
  25. Ritch PS, Occhipinti SJ, Skramstad KS, Shackney SE (1982) Increased relative effectiveness of doxorubicin against slowly proliferating sarcoma 180 cells after prolonged drug exposure. Cancer Treat Rep 66: 1159–1168PubMedGoogle Scholar
  26. Mhatre R, Herman E, Huidobro A, Waravdekar V (1971) The possible relationship between metabolism and cardiac toxicity af daunomycin and related compounds. J Pharmacol Exp Ther 178: 216–222PubMedGoogle Scholar
  27. Jaenke RS, Deprez-de-Campeneere D, Trouet A (1980) Cardiotoxicity and comparative pharmacokinetics of six anthracyclines in the rabbit. Cancer Res 40: 3530–3536PubMedGoogle Scholar
  28. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43: 460–472PubMedGoogle Scholar
  29. Herman EH, Rahman A, Ferrans VJ et al. (1983) Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Res 43: 5427–5432PubMedGoogle Scholar
  30. Caponigro F, Comella P, Budillon A et al. (2000) Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann Oncol 11: 339–342PubMedCrossRefGoogle Scholar
  31. Gill PS, Wernz J, Scadden DT et al. (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14: 2353–2364PubMedGoogle Scholar
  32. Olson F, Mayhew E, Maslow D et al. (1982) Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. Europ J Clin Oncol 18: 167–176CrossRefGoogle Scholar
  33. Giaccone G, Linn SC, Welink et al. (1997) A dose-finding and pharmacokinetic study of reversal resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3: 2005–2015PubMedGoogle Scholar
  34. Bissett D, Kerr DJ, Cassidy J et al. (1991) Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br J Cancer 64: 1168–1171PubMedCrossRefGoogle Scholar
  35. Ozols RF, Cunnion RE, Klecker RW et al. (1987) Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5: 641–647PubMedGoogle Scholar
  36. Farber S, Diamond LK, Mercer RD et al. (1948) Temporary remission in acute leukemia in children produced by folic acid antagonist, 4 aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238: 787–793PubMedCrossRefGoogle Scholar
  37. Bleyer WA (1978) The clinical pharmacology of methotrexate. Cancer 41: 36–51PubMed3.0.CO%3B2-I'>CrossRefGoogle Scholar
  38. Jolivet J, Cowan KH, Curt GA et al. (1983) The pharmacology and clinical use of methotrexate. Cancer 309: 1094–1104Google Scholar
  39. Schornagel LH, McVie JG (1983) The clinical pharmacology of methotrexate. Cancer Treat Rev 10: 53–75PubMedCrossRefGoogle Scholar
  40. Lansiaux A, Lokiec F (2007) Pemetrexed: de la préclinique à la clinique. Bull Cancer 94: 34–38Google Scholar
  41. Goldman ID, Zhao R (2002) Molecular, Biochemical, and cellular pharmacology of pemetrexed. Semin Oncol 29,suppl 18: 3–17PubMedGoogle Scholar
  42. Duschinsky R, Pleven E, Heidelberg C (1957) The synthesis of 5-fluoropyrimidines. J Am Chem Soc 79: 4559–4560CrossRefGoogle Scholar
  43. Santini J, Milano G, Thyss A et al. (1989) 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer patients. Br J Cancer 59: 287–290PubMedCrossRefGoogle Scholar
  44. Etienne, MC, Cheradame S, Fischel et al. (1995) Response to fluorouracil therapy in cancer patients: The role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 13: 1663–1670PubMedGoogle Scholar
  45. Magne N, Etienne-Grimadi MC, Cals L et al. (2007) Dihydropyrimidine dehydrogenase activity and the IVS14+1G>A mutation in patients developing 5FU-related toxicity. Brit J Clin Pharmacol 64: 237–240CrossRefGoogle Scholar
  46. Levêque D, Wihlm J, Jehl F (1996) Pharmacologie des Catharantus alcaloïdes. Bull Cancer 83: 176–186PubMedCrossRefGoogle Scholar
  47. Lokiec F (1995) La pharmacocinétique des taxanes. Sem Hop Paris 71: 687–691Google Scholar
  48. Vaishampayan U, Parchment RE, Jasti BR, Hussain M (1999) Taxanes: An overview of the pharmacokinetics and pharmacodynamics. Urology 54: 22–29PubMedCrossRefGoogle Scholar
  49. Lavelle F (2002) Nouveaux taxanes et dérivés d’épothilone en cours d’études cliniques. Bull Cancer 89: 343–350PubMedGoogle Scholar
Pdf

Aims: The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the.

Microtek scanmaker 9800xl troubleshooting. The flatbed scanner offers 42-bit, 2400 x 1200 dot per inch single-pass scanning capabilities.